Seaweed: So much more than a sushi wrap

+Natural health
In print
EDUCATION

Seaweed: So much more than a sushi wrap

Phil Rasmussen

 Gracilaria
Algae such as Gracilaria are used to make gelling agents and growth media in microbiology [Image: Emoody26 at English Wikipedia, CC BY 3.0]

Seaweeds are not just weeds from the sea; they are showing huge potential for treating a range of conditions, as well as addressing climate concerns, writes pharmacist and medical herbalist Phil Rasmussen

Seaweeds (marine algae) are plant-like organisms that share some morphological and physiological characteristics with both plants and animals, and gro
References
  1. Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 2011;9(6):1056–100.
  1. Wu Q, Liu L, Miron A, et al. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016;90(8):1817–40.
  1. Hatami E, Ghalishourani SS, Najafgholizadeh A, et al. The effect of spirulina on type 2 diabetes: a systematic review and meta-analysis. J Diabetes Metab Disord 2021;20(1):883–92.
  1. Donoso A, González-Durán J, Muñoz AA, et al. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacol Res 2021;166:105479.
  1. Ambati RR, Phang SM, Ravi S, Aswathanarayana RG. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications--a review. Mar Drugs 2014;12(1):128–52.
  1. Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 2011;16(4):355–64.
  1. Giannaccare G, Pellegrini M, Senni C, et al. Clinical applications of astaxanthin in the treatment of ocular diseases: Emerging insights. Mar Drugs 2020;18(5):239.
  1. Kizawa Y, Sekikawa T, Kageyama M, et al. Effects of anthocyanin, astaxanthin, and lutein on eye functions: a randomized, double-blind, placebo-controlled study. J Clin Biochem Nutr 2021;69(1):77–90.
  1. Iliou K, Kikionis S, Ioannou E, Roussis V. Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications. Mar Drugs 2022;20(5):314.
  1. Xie Y, Gao P, He F, Zhang C. Application of alginate-based hydrogels in hemostasis. Gels 2022;8(2):109. 
  1. Premarathna AD, Wijesekera SK, Jayasooriya AP, et al. In vitro and in vivo evaluation of the wound healing properties and safety assessment of two seaweeds (Sargassum ilicifolium and Ulva lactuca). Biochem Biophys Rep 2021;26:100986.
  1. Liberski A, Latif N, Raynaud C, et al. Alginate for cardiac regeneration: From seaweed to clinical trials. Glob Cardiol Sci Pract 2016;2016(1):e201604.
  1. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 2018;198:385–400.
  1. Kang HK, Seo CH, Park Y. Marine peptides and their anti-infective activities. Mar Drugs 2015;13(1):618–54.
  1. Pérez MJ, Falqué E, Domínguez H. Antimicrobial action of compounds from marine seaweed. Mar Drugs 2016;14(3):52.
  1. Gomes L, Monteiro P, Cotas J, et al. Seaweeds’ pigments and phenolic compounds with antimicrobial potential. Biomol Concepts 2022;13(1):89–102.
  1. Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 2015;20(2):89–97.
  1. Arvinda Swamy ML. Marine algal sources for treating bacterial diseases. Adv Food Nutr Res 2011;64:71–84.
  1. Ardita NF, Mithasari L, Untoro D, Salasia SIO. Potential antimicrobial properties of the Ulva lactuca extract against methicillin-resistant Staphylococcus aureus-infected wounds: A review. Vet World 2021;14(5):1116–23.
  1. Wei Y, Liu Q, Xu C, et al. Damage to the membrane permeability and cell death of vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii. J Aquat Food Product Technol 2016;25(3):323–33.
  1. Okimura T, Jiang Z, Komatsubara H, et al. Therapeutic effects of an orally administered edible seaweed-derived polysaccharide preparation, ascophyllan HS, on a Streptococcus pneumoniae infection mouse model. Int J Biol Macromol 2020;154:1116–22.
  1. Bhowmick S, Mazumdar A, Moulick A, Adam V. Algal metabolites: an inevitable substitute for antibiotics. Biotechnol Adv 2020;43(November 2019):107571.
  1. Bogolitsyn K, Dobrodeeva L, Druzhinina A, et al. Biological activity of a polyphenolic complex of Arctic brown algae. J Appl Phycology 2019;31(5):3341–48.
  1. Mišurcová L, Škrovánková S, Samek D, et al. Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res 2012;66:75–145.
  1. Besednova NN, Andryukov BG, Zaporozhets TS, et al. Antiviral effects of polyphenols from marine algae. Biomedicines 2021;9(2):200.
  1. Geetha Bai R, Tuvikene R. Potential antiviral properties of industrially important marine algal polysaccharides and their significance in fighting a future viral pandemic. Viruses 2021;13(9):1817. 
  1. Pagarete A, Ramos AS, Puntervoll P, et al. Antiviral potential of algal metabolites-A comprehensive review. Mar Drugs 2021;19(2):94.
  1. Hans N, Malik A, Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour Technol Rep 2021;13:100623.
  1. Asif M, Saleem M, Yaseen HS, et al. Potential role of marine species-derived bioactive agents in the management of SARS-CoV-2 infection. Future Microbiol 2021;16(16):1289–301.
  1. Frediansyah A. The antiviral activity of iota-, kappa-, and lambda-carrageenan against COVID-19: A critical review. Clin Epidemiol Glob Health 2021;12:100826.
  1. Alsenani F, Tupally KR, Chua ET, et al. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm J 2020;28(12):1834–41.
  1. Lajili S, Deghrigue M, Bel Haj Amor H, et al. In vitro immunomodulatory activity and in vivo anti-inflammatory and analgesic potential with gastroprotective effect of the Mediterranean red alga Laurencia obtusa. Pharm Biol 2016;54(11):2486–95.
  1. Shu MH, Appleton D, Zandi K, AbuBakar S. Anti-inflammatory, gastroprotective and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract. BMC Complement Altern Med 2013;13:61.
  1. Sousa WM, Silva RO, Bezerra FF, et al. Sulfated polysaccharide fraction from marine algae Solieria filiformis: Structural characterization, gastroprotective and antioxidant effects. Carbohydr Polym 2016;152:140–48.
  1. Shibata H, Kimura-Takagi I, Nagaoka M, et al. Inhibitory effect of cladosiphon fucoidan on the adhesion of helicobacter pylori to human gastric cells. J Nutr Sci Vitaminol (Tokyo) 1999;45:325–36.
  1. Besednova NN, Zaporozhets TS, Somova LM, Kuznetsova TA. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 2015;20(2):89–97.
  1. Chua EG, Verbrugghe P, Perkins TT, Tay CY. Fucoidans disrupt adherence of Helicobacter pylori to AGS cells in vitro. Evid Based Complement Alternat Med 2015;2015:120981.
  1. Schepers M, Martens N, Tiane A, et al. Edible seaweed-derived constituents: an undisclosed source of neuroprotective compounds. Neural Regen Res 2020;15(5):790–95.
  1. Hannan MA, Dash R, Haque MN, et al. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar Drugs 2020;18(7):347. 
  1. Xiao S, Chan P, Wang T, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res Ther 2021;13(1):62.
  1. Subermaniam K, Teoh SL, Yow YY, et al. Marine algae as emerging therapeutic alternatives for depression: A review. Iran J Basic Med Sci 2021;24(8):997–1013. 
  1. Kumar MS, Sharma SA. Toxicological effects of marine seaweeds: a cautious insight for human consumption. Crit Rev Food Sci Nutr 2021;61(3):500–21.
  1. Roque BM, Venegas M, Kinley RD, et al. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One 2021;16(3):e0247820.